Effect of conformational flexibility and solvation on receptor-ligand binding free energies.
نویسندگان
چکیده
A coherent framework is presented for determining the free energy change accompanying ligand binding to protein receptors. The most important new feature of the method is the contribution of the flexibility of the free ligand, and hence its conformational change on binding, to the free energy. Flexibility introduces two additional terms in the free energy difference: the internal energy difference between the ligand in the bound and free states and the backbone entropy loss. The former requires taking explicit account of the difference in solvation of the various forms of the free ligand. The solvation free energy change is estimated using an atomic solvation parameter model [Eisenberg & Mclachlan (1986) Nature 319, 199-203], with an improved parameter set. In order to evaluate the method, we applied it to three data sets for which increasingly general methods are required. The set to which the most restrictive theory can be applied consists of eight crystallized endopeptidase--protein inhibitor complexes which do not change conformation on binding and for which the major contribution to the solvation free energy is entropic. The results are in good agreement with the measured values and somewhat better than those previously reported in the literature. The second data set compares the relative binding free energies of biotin and its analogs for streptavidin. In this case the structures are also rigid, but solvation free energy must include both enthalpic and entropic components. We find that differential free energy predictions are approximately the same as those obtained by free energy perturbation techniques. The final application is an analysis of the measured stabilities of 13 different MHC receptor-peptide complexes. In this case we show that flexibility contributes 30-50% of the free energy change and find a correlation of 0.88 between our predicted free energies and peptide dissociation times.
منابع مشابه
Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملEffect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملInteraction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation
This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...
متن کاملComputational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of protein-lipid complexes
Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed struct...
متن کاملLarge scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process.
Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 33 47 شماره
صفحات -
تاریخ انتشار 1994